New York State Department of Transportation Technical Support and Strategic Plan Development

NYSDOT Task 2.A Presentation Workshop

Hawthorne, NY September 23, 2005

ConSysTec Corp under subcontract to Siemens ITS

Manny Insignares, manny.insignares@consystec.com Patrick Chan, P.E., patrick.chan@consystec.com Raman K. Patel, Ph.D., rkpatelassociates@msn.com

• Purpose of the Workshop:

To gather feedback and to review a process to incorporate regional ITS architecture and ITS standards into NYSDOT's Project Development Process.

ITS Standards	What are ITS Standards and where do they fit?	
Standards in NYS Projects	ITS Standards in the NYSDOT Project Development Process	
PSEA	Project Systems Engineering Analysis	
Specifying ITS Standards	Level of detail when specifying ITS Standards	

Motivation

- 1. You want to connect (share information) with your neighbors
- 2. You need to develop good specifications for your ITS projects (interactive exercise)
- NYSDOT is working to develop a common approach to integrating regional ITS architecture and ITS standards with your Project Development Process
- Interactive discussion to gather feedback on "Best Practices for ITS Standards Specifications Report"

- NYSDOT Technical Support & Strategic Plan Development Task 2.A Subtasks
 - 1. Review of National Standards and Testing Programs
 - Draft Final Report. Used as a "desk reference".
 - 2. Best Practices for ITS Standards Specification
 - Draft Report will be updated based on today's workshop
 - **3**. Key ITS Standards for NYS and Testing Opportunities
 - Reviewing preliminary information today
 - 4. Standards Specification Guidance
 - Will build upon subtasks 2 & 3
 - Course Development: "Using ITS Standards for Deployment: Identification, Specification, and Testing"
 - Will build upon subtask 4 and input from today's workshop

- Agenda (AM Project Programming)
 - Introductions
 - Exercise #1
 - ITS Standards Overview
 - BREAK
 - Overview of the NYSDOT Project Development Process (Project Programming)
 - Initial Project Proposal
 - Transportation Improvement Program
 - Regional ITS Architecture
 - Project Scoping
 - Exercise #2

- Agenda (PM Project Design and Specification)
 - Review of Key ITS Standards
 - Exercise #3
 - BREAK

ConSysTec Corp

- Systems Engineering Overview
- Project Systems Engineering Analysis
- Overview of the NYSDOT Project Development Process (Project Design)
 - Design Reports
 - Advanced Detailed Plans
 - Plans, Specifications & Estimates
 - _ Testing Standards

Introductions and Administration - Please Sign-In

- Brief Introduction
 - Name
 - Organization
 - What is your role in ITS?
 - What area do you need help in implementing ITS and ITS standards?
- Safety and Comfort Announcements
 - Exits
 - Restrooms
 - Today's adjournment

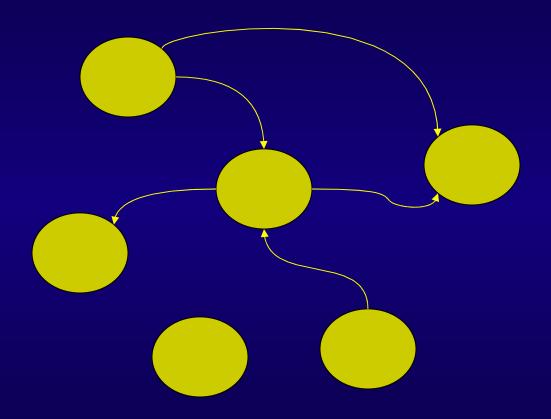
Exercise #1

Exercise #1 – Interagency Coordination

ConSysTec Corp

Problem: A major truck accident with spilled chemicals has just occurred, causing a blockage of one interstate highway and rerouting of all traffic to a bypass facility running through an adjacent region. You have to notify the other region.....

Your Task: Determine the following:
1. Who will you contact to relay this information ?
2. What information will be conveyed ?


3. How will this be done – now, and in the future ?

Time 15 minutes

Exercise #1 – Class Discussion

Coordinating with other partners in your region.

Exercise #1 – Class Discussion

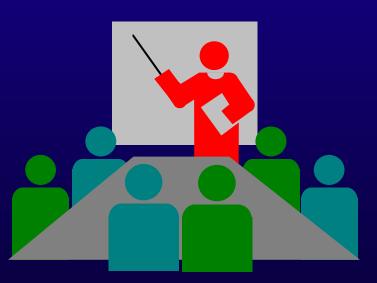
Coordinating with other partners in your region.

Who Will Contact Who	What Information Will You Convey	How Will This Be Done Currently	How Will This Be Done in the Future
DOT District to DOT District	Message on DMS Signs	Telephone	System to System

Exercise #1 – Class Discussion

- What have we learned ?
 - Communication with our regional partners is important.
 - Incidents can have a dramatic impact on neighboring jurisdictions.
 - Better understanding of real world impacts.
- We will be discussing standards for the deployment of interoperable systems

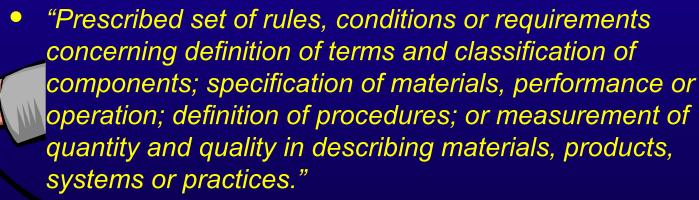
ConSysTec Corp



Overview: ITS Standards

What is a Standard?

ii ii i


ConSysTec Corp

- Power Cord?
- Railroad Track?

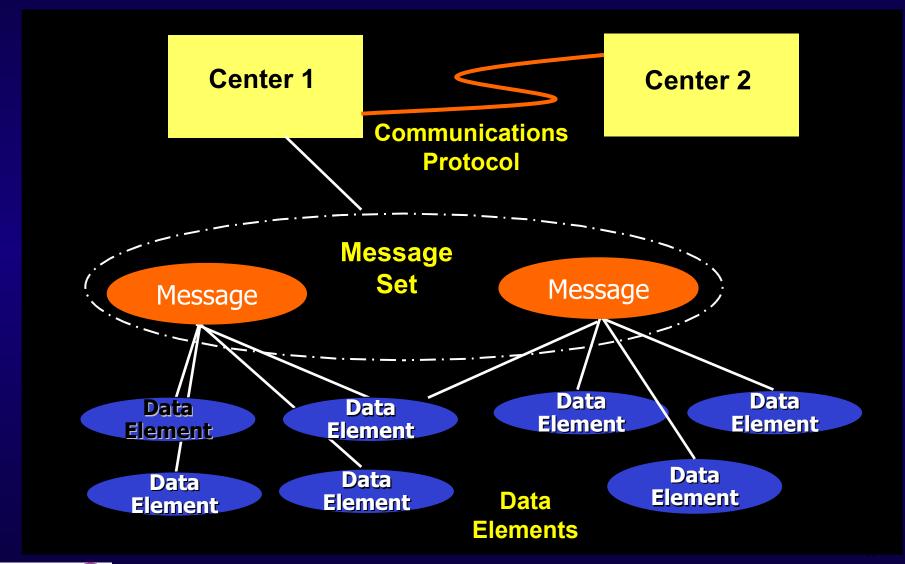
MUTCD?

• Standards can be defined as:

- National US Policy

And this page is written on 8 1/2" x 11" paper.

ConSysTec Corp


Types of Standards

- Hardware
- Software
- Equipment
- Performance
- Maintenance
- Practices

ITS Standards Structure

ConSysTec Corp

ITS Standards Structure

- Data Elements
- Message Set
- Communications
 Profile

"rules for sending sentences across an interface"

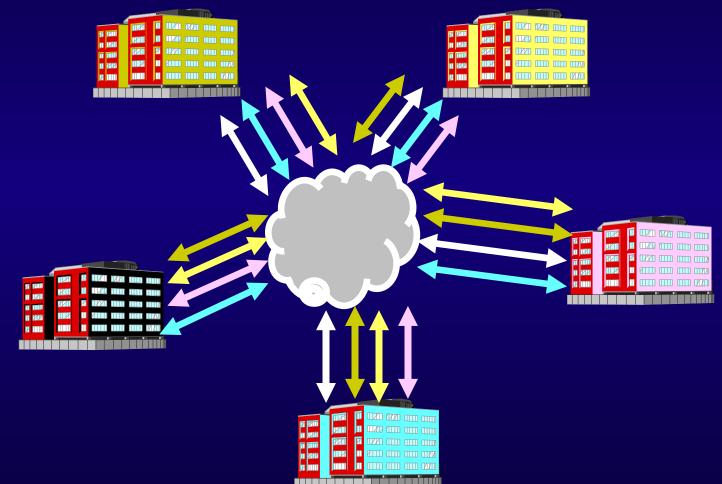
Incident message

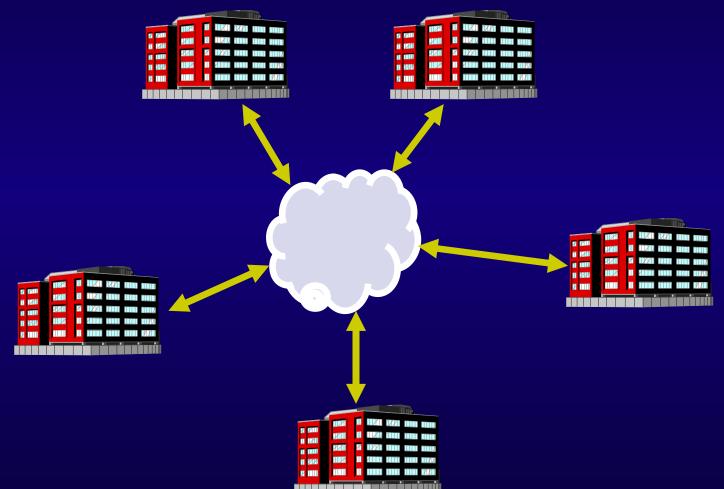
What is a Protocol?

- Protocols standards are set of <u>common rules</u> for exchanging data:
 - Data format
 - Control information coordination
 - Error handling
 - Timing

Examples of Internet Protocols

- Hypertext Transfer Protocol (HTTP)
- File Transfer Protocol (FTP)
- Transmission Control Protocol (TCP)
- Internet Protocol (IP)
- Simple Network Management Protocol (SNMP)



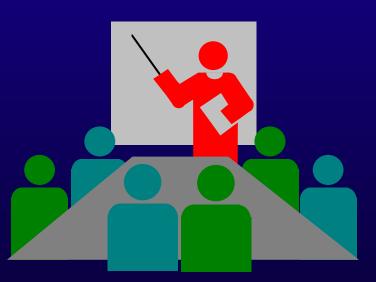


Without Standard: Many Interfaces Needed

With Standard: Just one Interface

 $\mathbf{O}\mathbf{O}$

Open Standards Lead to...

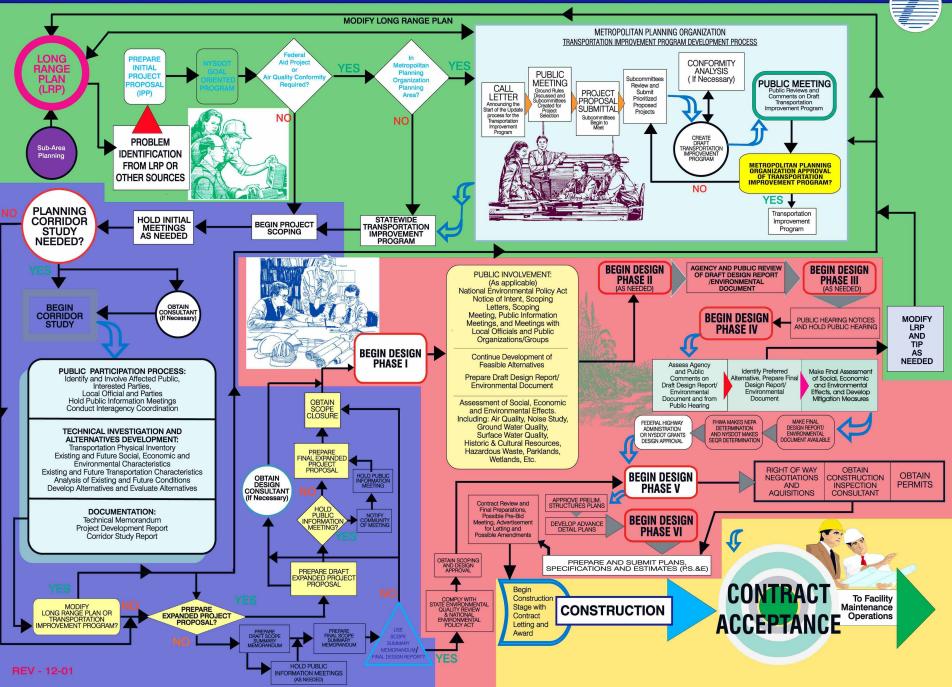


- Interchangeability multiple brands of a device on the same communications channel
- Interoperability different types of devices on the same communications channel
- Expandability add future devices

How do ITS Standards fit into the NYSDOT Project Development Process?

Agency's Perspective – What are the Issues?

- Integration of Systems across Institutional Boundaries
 - How does a region facilitate regional integration of systems?
- Transportation Planning / Project Scoping
 - How to define ITS projects that are in compliance with regional and not only agency-specific needs?
 - How to define ITS projects consistent with the regional ITS architecture?
 - What is the role of ITS architecture and standards in presenting high-level "solutions" to transportation needs and problems?


Agency's Perspective – What are the Issues?

- Design Report Development
 - How and where to address ITS Architecture and Standards?
 - How to evaluate ITS project design (solution) alternatives?
- Advanced Detail Plans (ADP) & Plans, Specifications & Estimates (PS&E)
 - How do you develop an ITS Standards-based specifications that reflect the final design?
- System Testing during Design and Build
 - Unit and/or Factory Testing of ITS Standards-based specifications
 - Field Testing
 - System Acceptance Testing

NYS DOT PROJECT DEVELOPMENT PROCESS

NYSDOT Project Development Process

- Initial Project Proposal (IPP)
- Transportation Improvement Program (TIP)
- Design Phase I
 - Project Scoping Report
- Design Phase IV
 - Preliminary Design Report
 - Detailed Design Report

NYSDOT Project Development Process

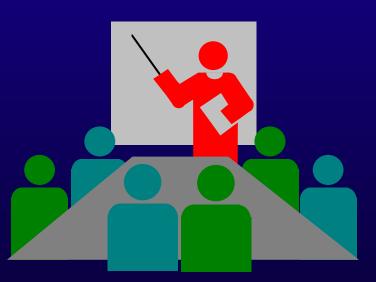
• Design Phase V

- Advanced Detailed Plans
- Plans, Specifications and Estimates (PS&E)
 - Test Plan
- Construction
 - Testing
- Contract Acceptance

Problem: Based on the Incident Scenario, program an ITS project.

Your Task: Determine the steps to program the project?

- 4. Develop an Initial Project Proposal
- Outline the steps to incorporate the IPP into the TIP



 \mathbf{O}

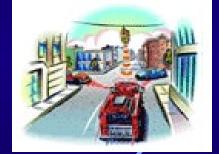
ConSysTec Corp

Overview: National and Regional ITS Architecture

There are many technologies used in ITS Systems.

- Detection technology
- Surveillance (Video) technology
- Wireless technology
- Fiber optic technology
- Traffic control systems
- Work-zone management technology
- Tracking technology
- GIS/GPS technologies
- AVL technology
- E-ZPass technology
- Others.....

How do we <u>PLAN</u> to use and integrate these technologies in ITS?


Vehicle-Based/Safety

Vehicle-to-Vehicle

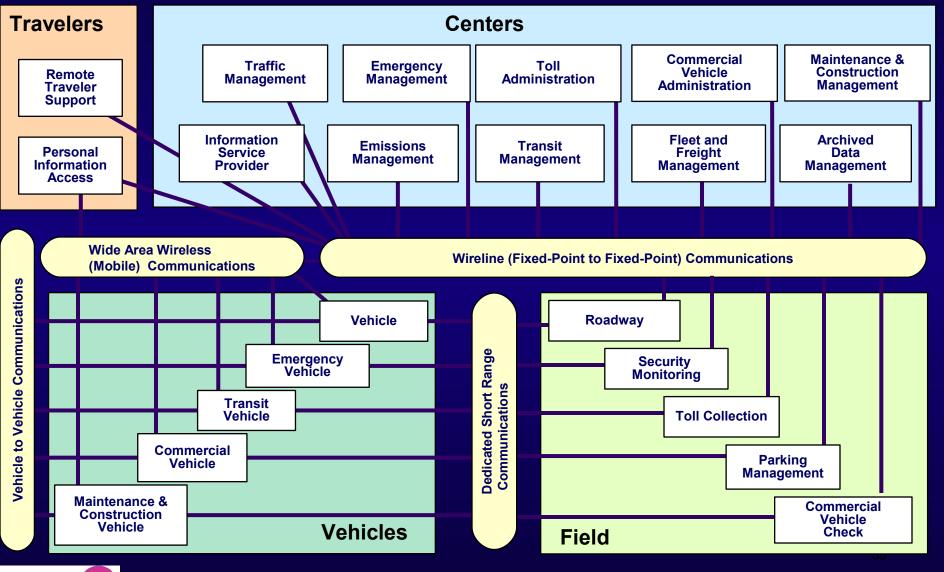
ConSysTec Corp

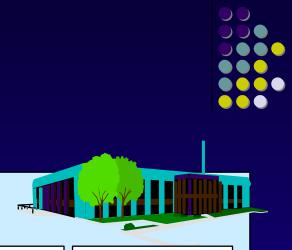
Management/Operation/HW-SW

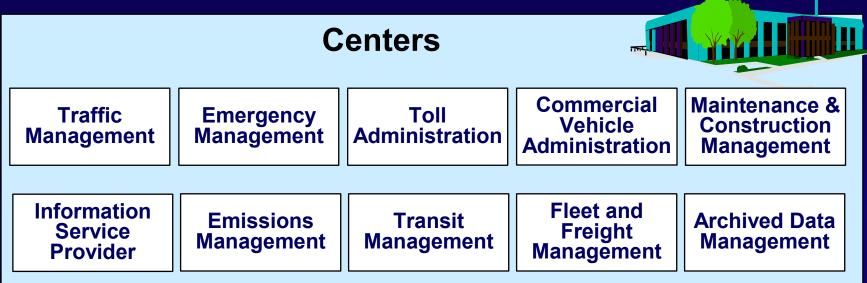
Vehicle-to-Roadside

Vehicle-Based/Navigation

The National ITS Architecture is a <u>Framework</u> to Help:

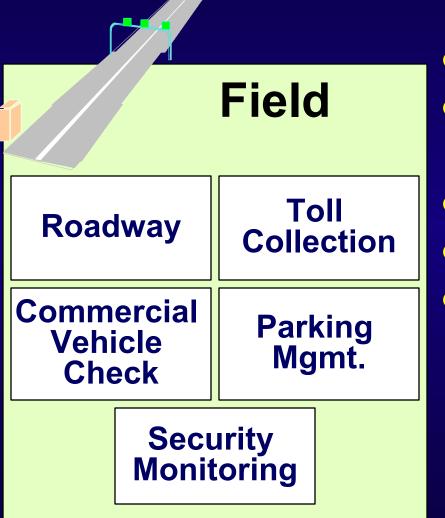

- Describe *services*
- Define *interconnections* between subsystems
- Develop blueprint for integration
- Deploy <u>integrated</u> systems




National ITS Architecture V 5.0 - "Sausage Diagram"

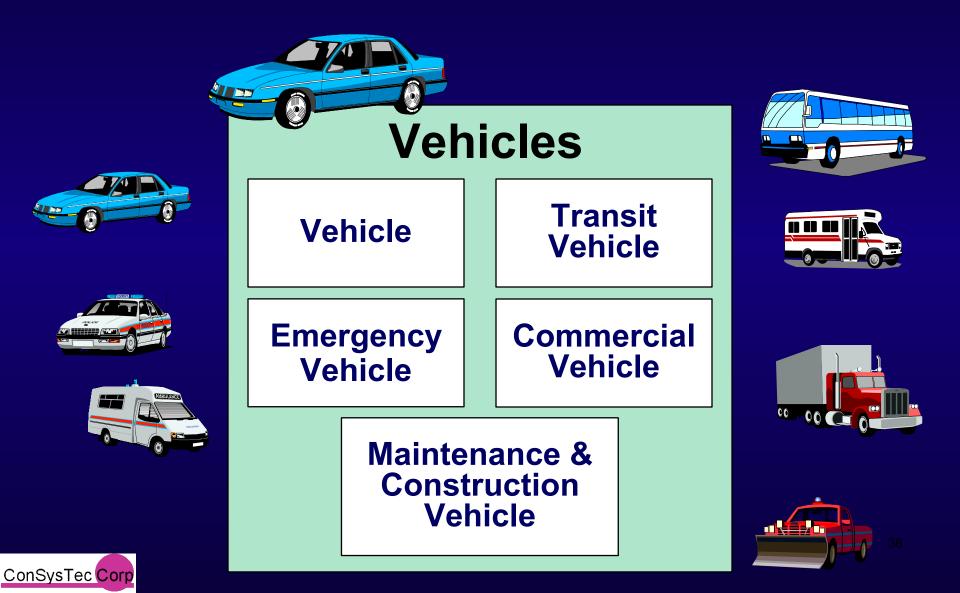
ConSysTec Corp

Center Subsystems

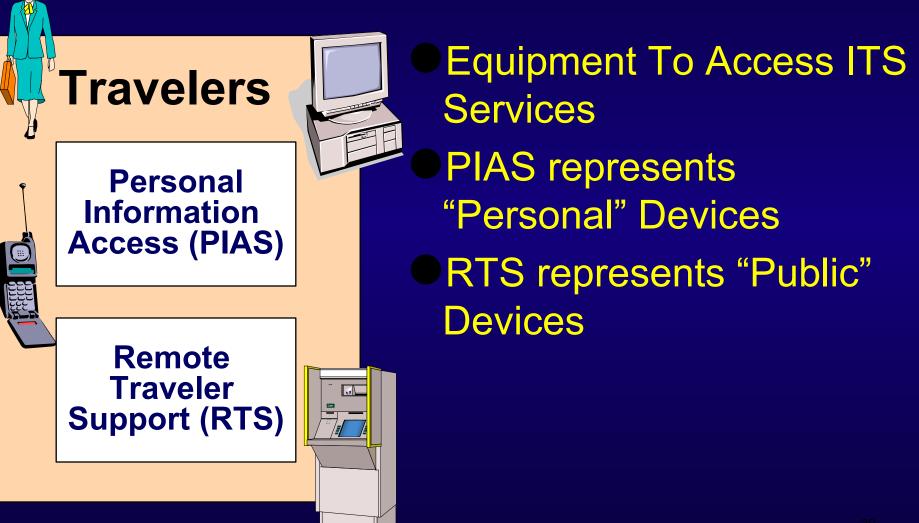

Perform management and administration functions

Coordinate with other Center Subsystems

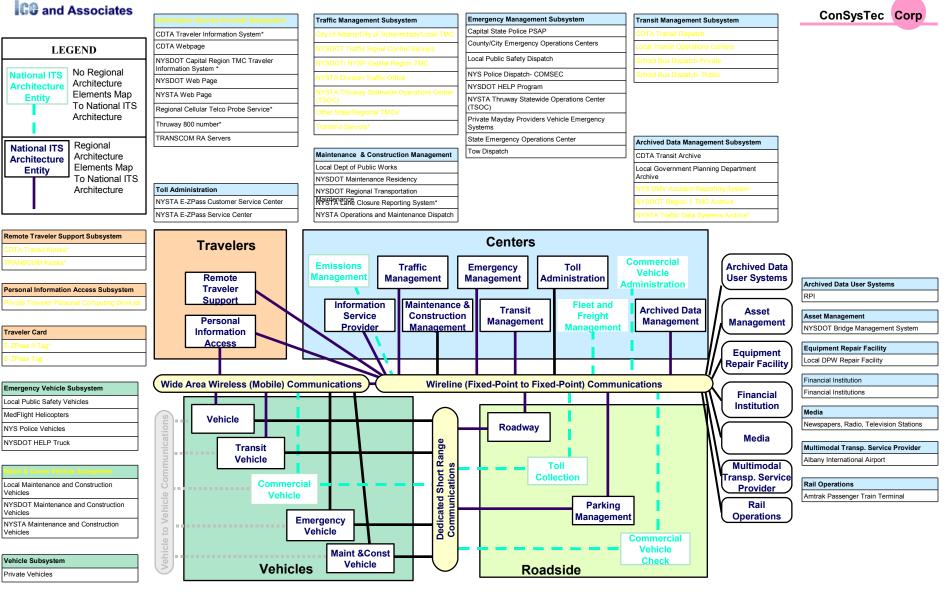
Field Subsystems



ITS infrastructure
On or along the transportation network
Surveillance
Control plans
Supply information


Vehicle Subsystems

Traveler Subsystems


Regional ITS Architecture

- Is a planning tool for implementing ITS within a region
- Uses the National ITS Architecture as a template – borrowing concepts, functional requirements, information flows, etc.

... the National ITS Architecture is tailored to meet the needs of a region in the form of a Regional ITS Architecture

Roadway Subsystem

NYSDOT Field Equipment NYSTA Field Equipment

Equipment

City of Albany/City of Schenectady/Local Field

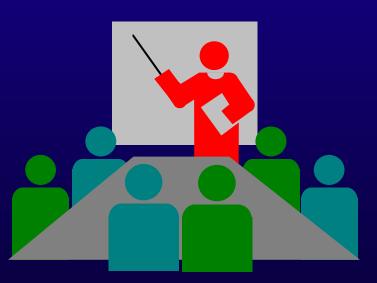
Albany International Airport Parking

CDTA Parking Management System*

Management System

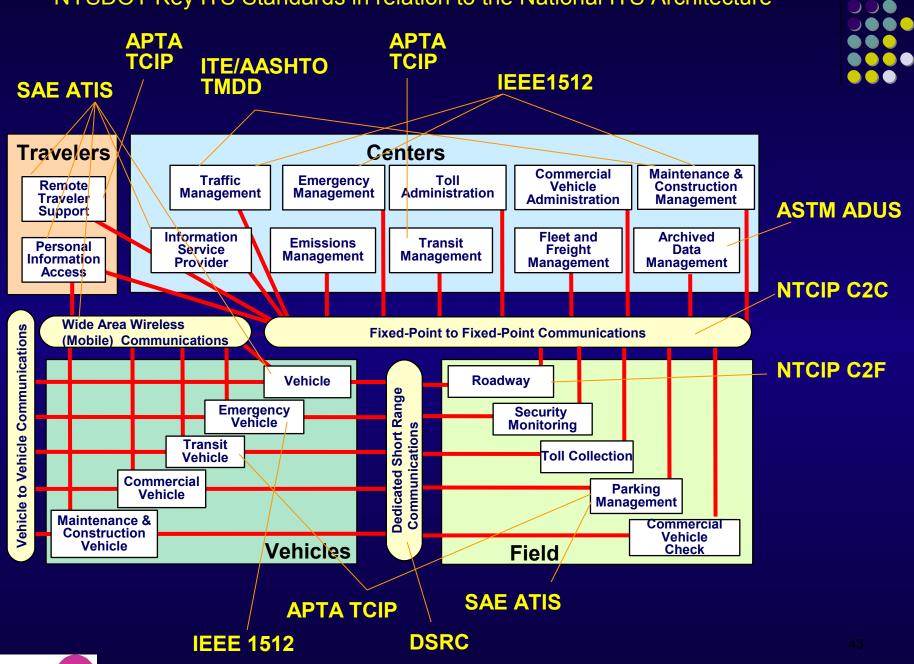
Transit Vehicle Subsystem
CDTA Supervisor's Vehicles
CDTA Transit Vehicles
Local Transit Vehicles

Capital District, NY


Regional ITS Architecture

"Sausage Diagram"

* Elements are *planned*, not *existing*.


Recommendations: Key ITS Standards

NYSDOT Key ITS Standards in relation to the National ITS Architecture

 \bigcirc

Acronyms used in Key ITS Standards

- SAE Society of Automotive Engineers
 - ATIS Advanced Traveler Information Systems
 - SAE J2354
- ITE Institute of Transportation Engineers &
 - AASHTO American Association of State Highway Transportation Officials
 - TMDD Advanced Traffic Management Systems Data Dictionary
- APTA American Public Transportation Association
 - TCIP Transit Communications Interface Profiles
- ASTM American Society for Testing & Materials
 - ADUS Archived Data Users Standard
- IEEE Institute of Electrical and Electronics Engineers
 - IEEE 1512 Family of Standards for Incident Management
- NTCIP National Transportation Communications for ITS Protocol
 - Joint NEMA National Electrical Manufacturers Association, ITE, and AASHTO Standard
 - Center to Field Communications and Objects (Data Elements) for Traffic Control Devices
 - Center to Center Protocol

Range of Standards Reviewed

- Traffic Management (Center to Field)
 - NTCIP, Devices
 - NTCIP, Protocols
 - ATC Family (2070)
 - NEMA TS Standards
- Traffic Management (Center to Center)
 - TMDD
- Transit Management
 - TCIP Family

- Travel Information
 - SAE-ATIS
- Incident Management
 - IEEE 1512 Family
 - Center to Center Protocols
 - DATEX
 - XML
- Other Standards
 - DSRC (**)
 - ADUS (*)
 - CVO (*)

Hardware

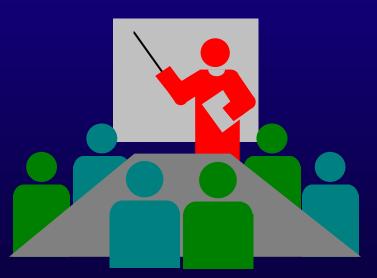
Data Elements

Messages

Protocols

* Question: ADUS & CVO Standards ** Regional DSRC – E-ZPass

Review of Criteria for Selecting Key ITS Standards



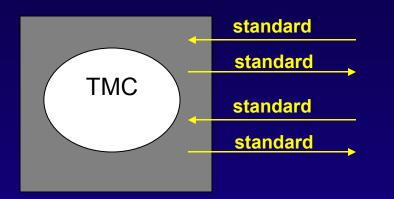
- Applicability to NYSDOT and NYS ITS systems, existing and planned
- Maturity of the standard
- National and NYS project experience with implementation of the ITS standards

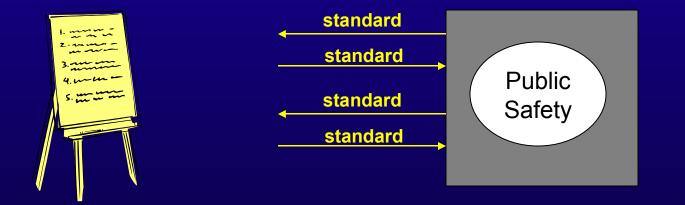
Exercise #3

Exercise # 3 – ITS Project Scope, Requirements and Design

Problem: Based on the Incident Scenario, create an ITS project to implement the Center-To-Field and Center-To-Center aspects.

Your Task: Determine the following:


- 4. Track the steps to build the project?
- Identify and analyze applicable ITS standards for your project.
- Label your drawing from Ex. #1 with applicable ITS standards.



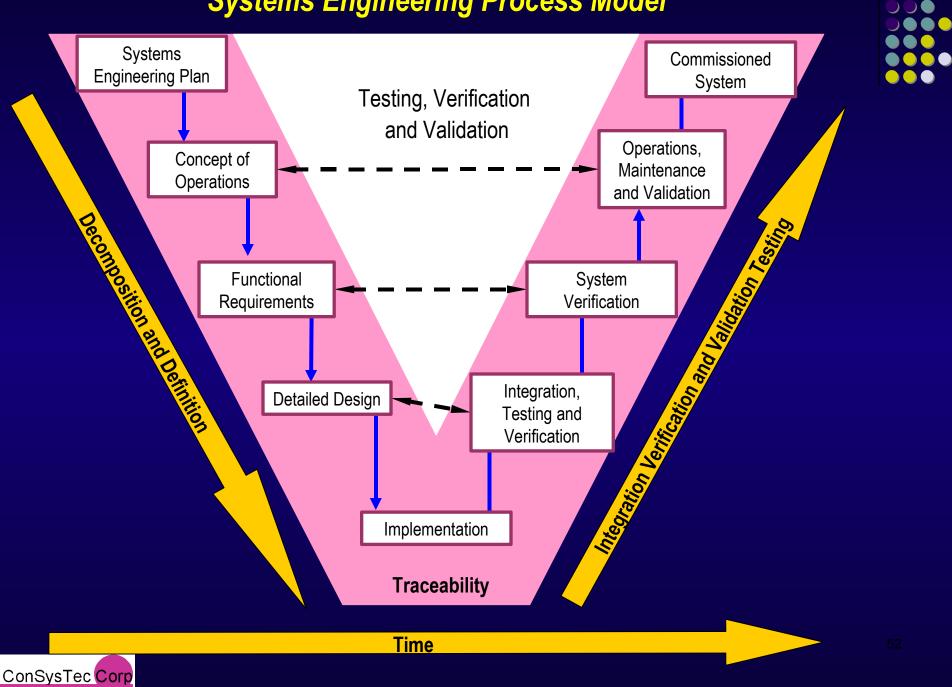
Time 15 minutes

Exercise # 3 – ITS Project Scope, Requirements and Design

Discussion for Center to Center

Overview: Systems Engineering Process

What is a systems engineering process (SEP)?


• A structured way of thinking...

- Allows us to build systems based on our needs with reliability and stability.
- We can trace engineering decisions back to user needs.
- It improves chances of system development on time and within budget.

Systems Engineering Process Model

 $\bigcirc \bigcirc$

Concept of Operations (ConOps)

- The concept of operations is a document that defines the environment in which the system is to operate.
- The Environment:
 - Relationships between system and Agency's responsibilities
 - Physical environment
 - Expectations

Functional Requirements & Design

Functional Requirements "What the system will do."

System Design "How the system will do it.

To meet my agency's needs, I need a system that will perform these stated functions...

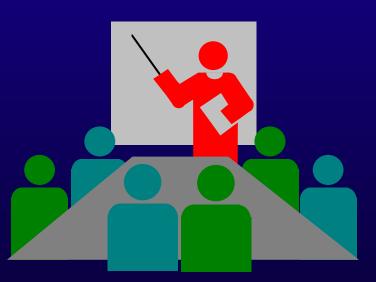
Specifications

System Integration and Testing

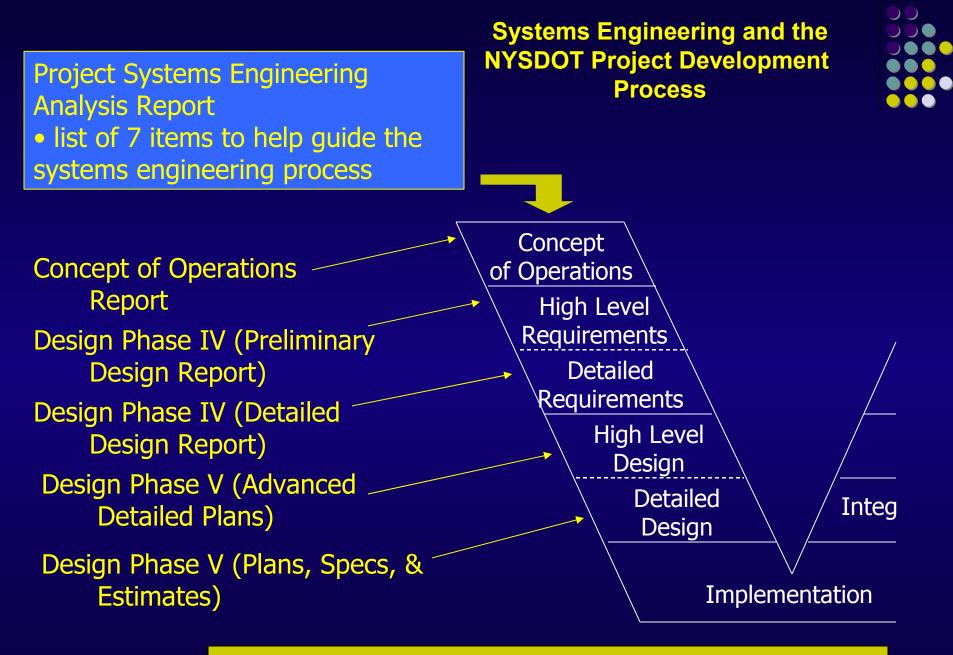
Testing

Acceptance Procedures

- Application Software
- Standards-Protocols


Hardware Components

Component Software

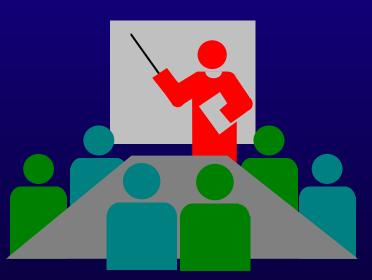


Recommendations: "Best Practices for ITS Standards Specifications"

ConSysTec Corp

The VEE does not show project programming steps including: TIP, Regional ITS Architecture, IPP, and Project Scoping.

Level of Detail for ITS Standards for Project Programming Steps



- Project Programming Steps
 - Regional ITS Architecture
 - List of ITS standards applicable for implementation of an architecture flow
 - Initial Project Proposal (IPP)
 - Project Scoping (based on Appendix on Project Scoping of Project Development Manual)
 - List of ITS standards that may be considered for implementation

Recommendations: Project Systems Engineering Analysis (PSEA)

NYSDOT Project Systems Engineering Analysis

Includes the following:

- 1. Implement a "portion" of the regional architecture being implemented
- 2. Agree on roles and responsibilities by participating and affected agencies
- **3**. Define the functional requirements
- 4. Identify alternative communications infrastructure and configurations
- Identify applicable ITS standards and testing procedures
- 6. Identify procurement options
- Develop procedures and implement resources necessary for operations and management of the system

An example is provided in the "Best Practices Report"

The list is based on FHWA Rule/FTA Policy on systems engineering analysis

Example

• Example ITS Project

The NYC Freeway Expansion Project is a freeway management project focused on the deployment of communications and ITS field equipment. The field equipment will be integrated into a central software system located at the New York City Joint TMC. The development of the New York City Joint TMC (with its central system) and any center to center communications to connect the TOC to other centers are not considered a part of this project for this example.

1) Portions of Regional ITS Architecture Being Implemented

Remote Traveler Support	Emergency Management (1)
AMTRAK/LIRR/NJTnansitPenn	AMTRAK Emergency Dispatch
Station Information Displays	FDNY Fire/EMS Dispatch
Long Island Transit Operators Customer Info Systems	MTA NYCT Security
Mid Hudson South Transit Operators Customer Info Systems	MTA Police Dispatch / Command Center
MTA LIRR Customer Info Systems	Municipal/County EOCs
MTALIRR Fare Point of Sale	Municipal/County Public Safety Dispatch
MTA LIRR Security Equipment	NYCDEP Dispatch Center
MTALIBCustomerInfoSystems	
MTA LIB Fare POS	Archived Data Management
MTA LIB Security Equip	Hudson Valley Traveler ITS Operators Operational DB
MTA MNR Customer Info Sys	Long Island ITS Operators
MTA MNR Fare Point of Sale	Operational DB
MTA MNR Security Equipment	MTA B/T, Bus, and Rail ITS
MTA NYCT Bus SecurityEquipment	Archives NYC ITS Operators ITS Archive
MTA NYCT Oustomer Info Systems MTA NYCT Fare Point of Sale	NYMTC Member Agencies Data
MTA NYCT Subway Security Equip	Collection Systems
MTA Regional Transit Fare POS	NYMTC/DCP Regional Planning
NYC DOITT Kiosks	Database
NYCDOT Division of Ferry	NYSDMV Accident Reporting Sy
Operations Customer Info Systems	NYSDOT Accident Reporting Sys
NYCDOT Franchise Bus Info Sys.	T RANSCOM Archived Data Syst
PANYNJ Airports In-Terminal Customer Information Systems	Fleet and Freight Management
PANYNJ Bus Terminals/Stations In- Terminal Customer InfoSystems	PANYNJ Port Commerce CARGO*MATE
PANYNJ PATH Fare Point of Sale	Private Commercial Vehicle and
PANYNJ PATH PATHVISION	Fleet Dispatch
TRANSCOM Kiosks	PrivateTerminal Operators Syste
WCBeeLine CustomerInfoSys.	Emergency Vehicle Subsystem
Personal Information Access	FDNY EMS Vehicles
PrivateTravelers Computing Dev	FDNY Fire Vehicles
TRANSCOM Mobile Comm Devices	MTA Bridges/Tunnels Emergenc
TRIPS123 Subscriber Systems	and Maintenance Vehicles
	MTA Bridges/Tunnels OCCC Special Operations Vehicles
Transit Vehicle	MTA NYCT Bus Depot Road
Long Island Transit Operators Veh	Service Trucks
Mid Hudson South Transit Operators Vehicles	MTA Police Vehicles
MTALIRRTrains	Municipal/County Public Safety V
MTA LIB Buses	NYCDOT OER Emergency Vehic NYCOEMWatch Command Vehic
MTA LIB Paratransit Buses	NYPD Vehicles
MTAMNRTrains	NYS Police Vehicles
MTA MetroCard Reader	NYSDOT/NYPD Help Vehicles
MTA NYCT Buses	PANYNUT unnels/Bridges/Termin
MTA NYCT Staten Is. RailwayVeh	Emergency Response Vehicles
MTA NYCT Subway Vehicles	Commercial Vehicle
NYCDOT Ferry Operations Ferries	Private Commercial and Fleet
NYCDOT Franchise Buses/AVL	Vehicles
PANYNJ PATH Transit Vehicles	Malatanana 8 Oanat Makiala
Private Long-Distance Bus Buses Private Paratransit Vehicles	Maintenance & Const Vehicle
WCBeeLineBuses	MTA Bridges/Tunnels Emergence and Maintenance Vehicles
WCBeeLineBuses WCBeeLineParatransitVehicles	Municipal/County PWD Vehicles
	NYCDOS Vehicles
Mahlala	
Vehicle PrivateTravelers Vehicles	NYCDOT Maintenance Vehicles NYSDOT Maintenance Vehicles

PANYNJ Tunnels/Bridges/Terminals

Maintenance Vehicles

y Management (1)	Emergency Management (2)	
mergency Dispatch	NYCDOT Office of Emergency	
EMS Dispatch	Response	
Security	NYCOEMWatch Command Center	Informatio
Dispatch / Command	NYPD 911 Communications Center Dispatch	Agency R
County EOCs	NYPD Dispatch	E-ZPass (
County Public Safety	NYPD Operations	MTABridg
	NYPDTMC	Relations
Dispatch Center	NYPDTransitBueau	MT A Bridg
Data Management	NYS Police Dispatch	MTALIRF
lley Traveler ITS	NYSDEC Systems PANYNJ PAPD 211	MTALIBO
Operational DB	Communications Center Dispatch	MTALIB
ITS Operators	State EOCs	MTA MNF
us, and Rail ITS	Toll Administration	MTA MNF
penatons ITSAnchive	E-ZPass CSC	MTA NYC
ember Agencies Data	E-ZPass Reciprocity Network	MTA NYC
Systems	E-2P ass Recipiocity Network	New York Reporting
CP Regional Planning		NYCDOT
Accident Reporting Sys.		_
ccident Reporting Sys.	S	-11 г
M Archived Data System	C Remote Traveler	L S
Reight Management	Support	가서 敲니
Freight Management		<u>رة</u>
ort Commerce ATE	Personal Information Access	
nmencial Vehicle and tch		1
minal Operators Systems		
	Wide Area Wireles	s (WODITE) Co
y Vehicle Subsystem		
Vehicles	S Vehide	
es/Tunnels Emergency nance Vehicles	Trar Veh	ide
erations Vehicles		Commerc
Bus DepotRoad	Vehicle 10 Vehicle Commu	Vehide
Vehicles	10 / 6	En En
County Public Safety Veh.	icle	
DER Emergency Vehicles	Veh	
Vatch Command Veh.	Ve	hicles
icles		
Vehicles		
IYPD Help Vehicles	Parking Management Subsystem	Toll Colle
unnels/Bridges/Terminals Response Vehicles	E-ZPass Plus Systems MTA MNR Parking Facilities	E-ZPass F MTA Bridg
	NYCDOT Parking Facilities	Collection
al Vehide	NYCDOT/DOP Parking Facilities	NYS Bridg
nmencial and Fleet	NYCDOT/DOP Parking Info System	Bridges To NYSTA To
	Public & Private Park and Ride Sys.	
ce & Const Vehicle cs/Tunnels Emergency		PANYNJ Identificati
nance Vehicles		PANYNJ T Electronic
County PWD Vehicles		
/ehicles		

New York City Sub Regional ITS Architecture		
"Sausage Diagram"		
(LIE Expansion Project Elements Highlighted)		

mation Service Provider (1)	Information Service Provider (2)
ncy Run Traveler InfoSystems	NYCDOT Bus Franchise Operators
ass CSC Web Site	Website
.Bridges/Tunnels Public	NYCDOT Traveler Info Web Site
tions Office	NYCDOT/DOP Parking Info System
Bridges/Tunnels Web Site	NYSDOT Traveler Info Systems
LIRR Customer Info Center	PANYNJ PATH Web Site
LIRR Web Site	PANYNJ Port Commerce
LIB Customer Info Center	CARGO*MATE Web Site
LIB Web Site	PANYNJ Port Commerce FIRST Web Site
MNR Customer Info Center	PANYNJ Traveler Info Systems
MNRWebSite	Private ISPs
NYCT Customer Info Center	TRANSCOM RA Servers
NYCT Web Site	
	TRIPS123
York State Emergency Road onling System	WCBeeLineTravelerInfoSystem
DOT Bus Franchise Website	WC Bee Line Web Site

ed)
Maintenance & Construction
Municipal/County PWD Operations
VYCDOS Dispatch
NYCDOT Bridge Maintenance
NYCDOT OCMC
NYCDOT Street and Anterial Maintenance Division
NYS Bridge Authority Mid Hudson Bridges Maintenance
NYSDOT Construction Operations
NYSDOT Maintenance Ops
PANYNJTunnels/Bridges/Terminal Vaintenance Unit
Emissions Management
NYCDEP Office of Environmental Analysis

Commercial Emissions Traffic Emergenc Toll Vehicle Mgmt Mgmt Mgmt Admin Admin Information Maintenance Fleet and Archived Transit Service Construction Freight Mgmt Data Mgmt Prov ider Mgmt Mgmt Wireline Communications Communication Roadway Toll Collection f nercial nide edicated (Parking Emergend Managemen Vehide Commercial Maint & Const Veh Vehide **D** . s eck ٩

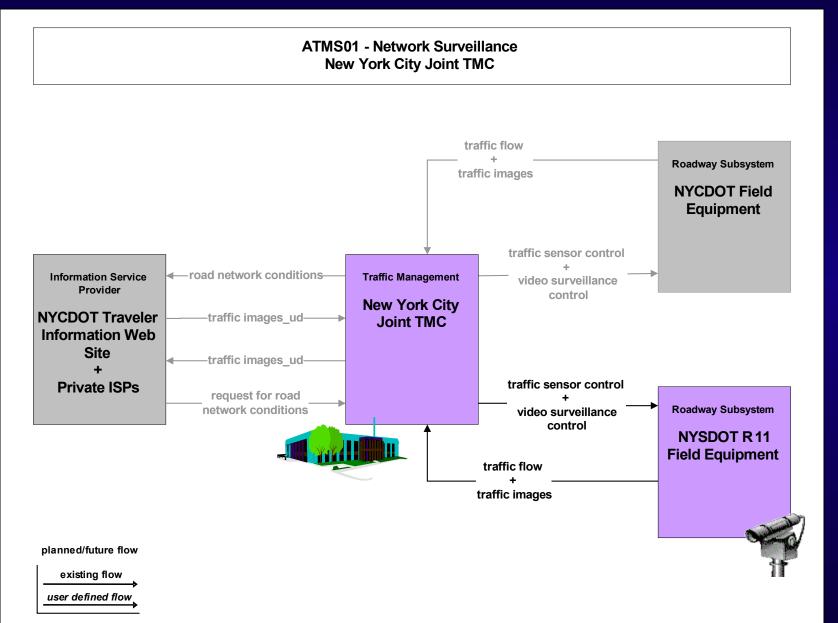
t Subsystem	Toll Collection	
s	E-ZPass Plus Systems	
cilities	MTA Bridges/Tunnels Facility Toll Collection Equipment	
ilities	Collection Equipment	
g Facilites	NYS Bridge Authority Mid Hudson Bridges Toll	
g InfoSystem	NYSTA Toll Collection Equipment	
and Ride Sys.	PANYNJ Airports Vehicle Identification Systems	
	PANYNJ Tunnels/Bridges/Terminals Electronic Toll Collection Equipment	
August 19, 2004.		

	Roadside	Check	
_	Base dama Outhana dama	Des duras Quidas activas	
	Roadway Subsystem	Roadway Subsystem	
	Long Island Municipal/County Field	NYSDOT R8 Field Equipment	
ſdl	Equipment	NYSDOT R10 Field Equipment	
	Mid Hudson South Municipal/County Field Equipment	NYSDOTR11 Field Equipment	
son	MTA Bridges/Tunnels Facility Field	PANYNJ Airports Field Equipmen	
ent	Equipment	PANYNJ Bus Terminals/Stations	
	MTA Bridges/Tunnels Lift Span	Field Equipment	
	Control System	PANYNJ PATH Vehicle Detection	
ninals	MTA Bridges/Tunnels Security	System	
oment	Equipment	PANYNJ Port Commerce Field	
	MTA LIRR Drawbridge Control Sys	Equipment	
	MTA MNR Drawbridge Control Sys	PANYNUTunnels/Bridges/Termina Field Equipment	
	NYCDEP Environmental Monitoring		
	Stations	PrivateTerminal Operators Roadside Tag Readers	
	NYCDOT Drawbridge Control Sys	TRANSMIT Agencies Field Equip.	
	NYCDOT Field Equipment	The real equip.	

Commercial Vehicle Admin	Transit Management Subsystem
MTA Bridges/Tunnels Engineens Office	Long Island Transit Operators Maintenance
MTA Bridges/Tunnels Facility Operations Center	Long Island Transit Operators Systems
MTA Bridges/Tunnels OCCC	Mid Hudson South Transit Operators Maintenance Facilities
NYC DEP HAZMAT Permitting NYCDOT Commercial Vehicle	Mid Hudson South Transit Operators
Permits Office	Systems MTA Agencies Transit Maintenance
PANYNJ Port Commerce CARGO*MATE	MTA LIRR Fare Mgmt System
PANYNJ Port Commerce	MTA LIRR Maintenance Yards
Credentialing Back Office (SEALINK)	MTA LIRR Operations Center
PANYNJ Port Commerce	MTA LIB Depot / Garage
Operations Centers	MTALIB Fare Mgmt System
PANYNJ Tunnels/Bildges/Terminals	MTALIB Fixed Route Bus Ops
Communications Desk/Operations Center	MTA LIB Paratransit Operations MTA MNR Fare Mgmt System
PrivateTerminal Operators	MTA MNR Hare Mgmt System MTA MNR Maintenance Yards
Systems	MTA MNR Operations Center Sys.
Traffic Management Subsystem	MTA MetroCard Fare Mgmt System
I-95 CC Information Exchange Network	MTA NYCT Bus Command Center – Operations
Long Island Municipal/County Local T OCs	MTA NYCT Bus Depot Central Road Operations
Mid Hudson South Municipal/County Local TMCs	MTA NYCT Bus DepotCentral Road Service Unit
MTA Bridges/Tunnels Facility	MTA NYCT Customer Info Center
Operations Center	MTA NYCT Fare MgmtSystem
MTA Bridges/Tunnels OCCC	MTA NYCT Paratransit Command
New York City Joint TMC	MTA NYCT Service Planning
NYCDOT Drawbridge Control Booths	MTA NYCT Staten Island Railway Control Facility
NYS Bridge Authority Mid Hudson Bridges	MTA NYCT Subway Rail Control Center
NYSDOT R10 INFORM	MTA NYCT Subway Yard
NYSDOT R8 Hudson Valley Travel er TOC	MTA NYCT Transit Bus Depot Maintenance
NYSDOT Statewide IEN	NJT Bus Operations Systems
NYSTATSOC	NJT Fane MgmtSystem
PANYNJ Airports Communications Desk/Ops	NJT Rail Operations Systems
Center	NYCDOT (Franchise Bus) Systems
PANYNJ Port Commerce Ops Centers	NYCDOT Division of Ferry Operations Systems
PANYNJTB&T Communications Desk/Ops Center	NYCDOT Franchise Bus Operators Systems
TRANSCOM IRVN Server	PANYNJ Airports AirTrain Ops
TRANSCOM Other Member /	PANYNJ Airports Communications Desk/Operations Center
Non-Member Agencies Systems T RANSCOM RA Servers	PANYNJ Bus Terminals/Stations
TRANSCOM RA Servers	Communications Desk/Ops Center
Architecture Workstations	PANYNJ PATH Fare Mgmt System
TRANSCOM TRANSMIT Server	PANYNJ PATH Operations Center PANYNJ PATH Vehicle Maint
TRANSMIT Agencies TRANSMIT Servers	PANYNJ PATH Vehicle Maint Private Ferry Operators Systems
Commercial Vehicle Check	Private Long-Distance Bus Ops
MTA Bridges/Tunnels Facility	Private Paratransit Operators
Commercial Vehicle Check	Regional Transit Fare Reciprocity
PANYNJ Port Commerce Terminal Access Equipment	TRANSCOM Other Member / Non- Member Agencies Systems
PANYNJ Tunada / Dádasa / Tarminda	TRIPS123
Tunnels/Bildges/Terminals Commercial Vehicle Check	WC Bee Line Fane Mgmt System
PrivateTerminal Operators	WC Bee Line Operations Center
Roadside Tag Readers	WC Bee Line Transit Maintenance

Portions of Regional ITS Architecture Being Implemented – ITS Elements

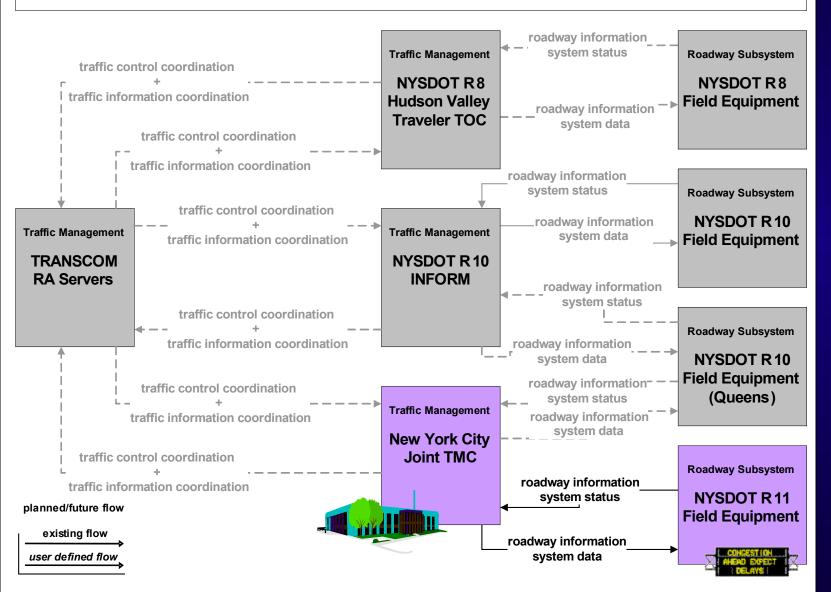
Project ITS Element	National ITS Architecture Subsystem
New York City Joint TMC	Traffic Management Emergency Management
NYSDOT R11 Field Equipment	Roadway Subsystem

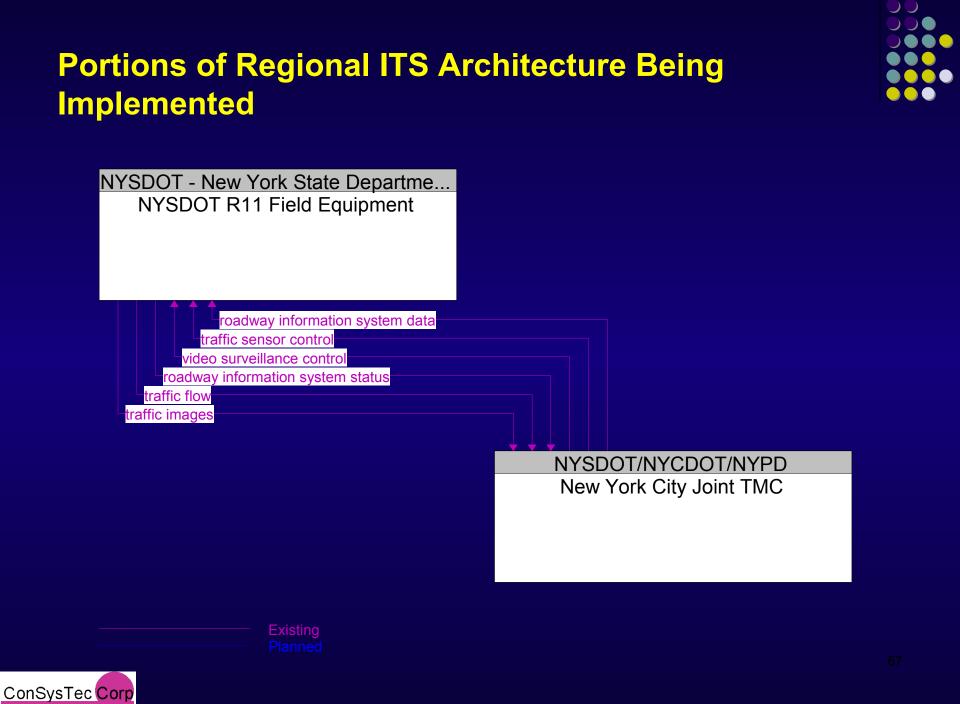


Portions of Regional ITS Architecture Being Implemented - Market Package Identification

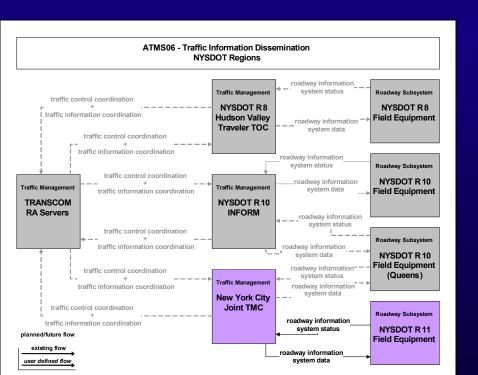
Market Package Diagram	MP Name	Applicable ITS Project Elements
ATMS01-3	Network Surveillance – New York City Joint TMC	New York City Joint TMC, NYSDOT R11 Field Equipment
ATMS04-1	Freeway Control – NYSDOT R8/R10/R11	New York City Joint TMC, NYSDOT R11 Field Equipment
ATMS06-09	Traffic Information Dissemination – NYSDOT Regions	New York City Joint TMC, NYSDOT R11 Field Equipment

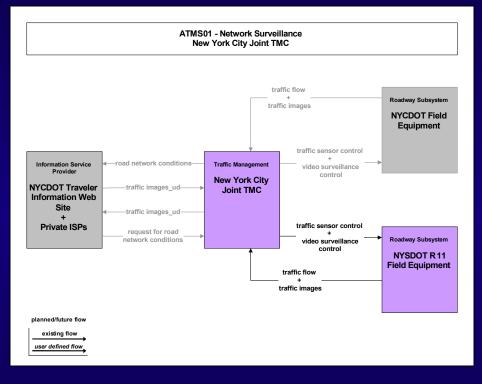
Portions of Regional ITS Architecture Being Implemented





Portions of Regional ITS Architecture Being Implemented




ATMS06 - Traffic Information Dissemination NYSDOT Regions

Question: Would it be useful to define what portion of the regional ITS architecture is being implemented at IPP?

 $\bigcirc \bigcirc$

2) Participating Agencies Roles and Responsibilities

Stakeholders	Project ITS Elements	Roles and Responsibilities
New York City Joint TMC	New York City Joint TMC	NYCDOT and NYSDOT jointly manages and operates the Joint TMC. From the Joint TMC various project freeway field equipment will be operated and controlled.
NYSDOT – New York State Department of Transportation	NYSDOT R11 Field Equipment	Freeway management field equipment operated and maintained by NYSDOT.

3) System Functional Requirements

- Tailor add/remove requirements from the Regional ITS Architecture to specify Project Requirements
- Turbo Architecture Functional Requirements are a good place to start

3) System Functional Requirements

ConSysTec Corp

ITS Element	Functional Area	Requirement
New York City Joint TMC	Collect Traffic Surveillance	The center shall distribute road network conditions data (raw or processed) based on collected and analyzed traffic sensor and surveillance data to other centers.
NYSDOT R11 Field Equipment (DMS)	Roadway Traffic Information Dissemination	The field element shall include dynamic messages signs for dissemination of traffic and other information to drivers, under center control; the DMS may be either those that display variable text messages, or those that have fixed format display(s) (e.g. vehicle restrictions, or lane open/close).
NYSDOT R11 Field Equipment (CCTV)	Roadway Basic Surveillance	The field element shall collect, process, and send traffic images to the center for further analysis and distribution.
NYSDOT R11 Field Equipment (CCTV)	Roadway Basic Surveillance	The field element shall return sensor and CCTV system operational status to the controlling center. 71

4) Analysis of Alternative System Configuration and Technology Options

Operational Alternatives.

For the purposes of a PSEA, this section would reflect which centers that house operational staff are involved. In the case of this example, all staff will be housed in the New York City Joint TMC and will be staffed 24 hours a day/7 days a week. However, another project may include the construction of a new, separate management center (whether operated by private sector operators). How the field equipment will be maintained (in-house or contractor) might also be included.

4) Analysis of Alternative System Configuration and Technology Options

Technology Assessment

This section should propose various design alternatives for system or equipment to deliver the required ITS functionality. For example, a number of technologies may be considered to fulfill the requirements of the "NYSDOT Vehicle" Detectors" subsystem including: radar detectors, inductive loops, and magnetometers. Likewise, fulfilling the requirements of the "NYSDOT CCTV" may be done with still frame, slow scan, or full motion video cameras. Each of these alternatives may carry additional or reduced cost to the project. ConSysTec Corp

4) Analysis of Alternative System Configuration and Technology Options

Communications Infrastructure Alternatives

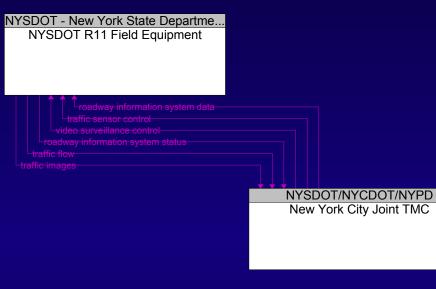
Communications alternatives will depend on \bigcirc some of the factors included in the bullets above (number of centers involved, the location of equipment, and the bandwidth of information that needs to be transferred). Communication options may include: fiber, dial-up, wireless, and a wide selection of network equipment (e.g., modems, Ethernet communications equipment, and fiber communications equipment) and communications protocols.

5) Procurement Options

Identify

- Funding Source / Document
- Project ID
- Funds Available
- Options
 - Sole-source
 - Competitive Bid
 - Public/Private Partnership

Project Document	Project ID	Amount Allocated
NYSDOT State TIP	NYS-12345	\$X million
NYSDOT Capital Plan	NYSDOT-12345	\$Y00,000


5) Procurement Options

- System life cycle cost information that may be highlighted in the section include:
 - ITS Equipment Cost
 - System Integration and Engineering Support Cost
 - Operations and Maintenance Cost

Start with mapping of ITS Architecture flows to ITS Standards

Architecture Flow	Interface	ITS Standard
roadway information system data roadway information system status	TMC ←→ DMS	NTCIP 1203 – Dynamic Message Signs
traffic images video surveillance control	$TMC \leftarrow \rightarrow CCTV$	NTCIP 1205 – CCTV
traffic sensor control traffic flow	TMC $\leftarrow \rightarrow$ Traffic Sensors	NTCIP 1209 – Traffic Sensor Systems

List of Applicable ITS Standards for Project

Document Number	Document Title Involved	Project Applicability
NTCIP 1101	Simple Transportation Management Framework (STMF)	Yes
NTCIP 1201	Global Object Definitions	Yes
NTCIP 1203	Object Definitions for Dynamic Message Signs (DMS)	Yes
NTCIP 1205	Object Definitions for Closed Circuit Television (CCTV) Camera Control	Yes
NTCIP 1206	Object Definitions for Data Collection and Monitoring (DCM) Devices	No
NTCIP 1208	Object Definitions for Closed Circuit Television (CCTV) Switching	No
NTCIP 1209	Data Element Definitions for Transportation Sensor Systems	Yes
NTCIP 2101	Point to Multi Point Protocol (PMPP) Using RS-232 Sub Network Profile	Yes
NTCIP 2103	Point-to-Point Protocol (PPP) Over RS-232 Sub network Profile	Yes
NTCIP 2201	Transportation Transport Profile ("NULL" Transport Profile)	Yes
NTCIP 2202	Internet (TCIP/IP and UDP/IP) Transport Profile	Yes
NTCIP 2301	Simple Transportation Management Framework (STMF) Application Profile	Yes

Testing Procedures

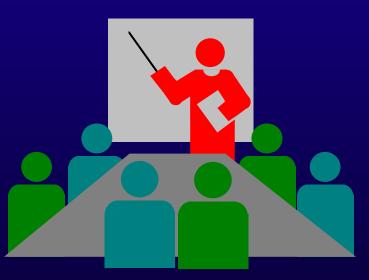
- To accomplish system testing of the ITS elements, the following types of tests will be required for each unit of equipment furnished:
- Unit Test
- Integration Test
- System Test

Based on Guidance from ITS Standards Training Program.

ITS Standards Testing

- Documentation
 - MIB (Device Database) or XML Schema (C2C Message Template)
- Acceptance Testing
 - How conformance with the standards will be tested
- ITS Standards Interpretation Resolution
 - How conflicts or ambiguities in interpreting the standard will be resolved

7) Procedures and Resources for Operations and Management


 This section of the PSEA should outline the organizational procedures that will be put in place for the operations and management of the project's capabilities (in this example freeway device operations). In addition, any resources necessary for operations and management would be considered.

Recommendations:

Integrating Regional ITS Architecture and Standards into NYSDOT's Project Development Process

Concepts Of Operation

• Level of Detail

- No direct relationship between ITS Standards and Concepts Of Operation document
- Focus is on operations and maintenance, but is a valuable input.

Preliminary Design Report

- High Level Requirements
 - Should be same level of detail, perhaps refined, of what is stated in the PSEA.

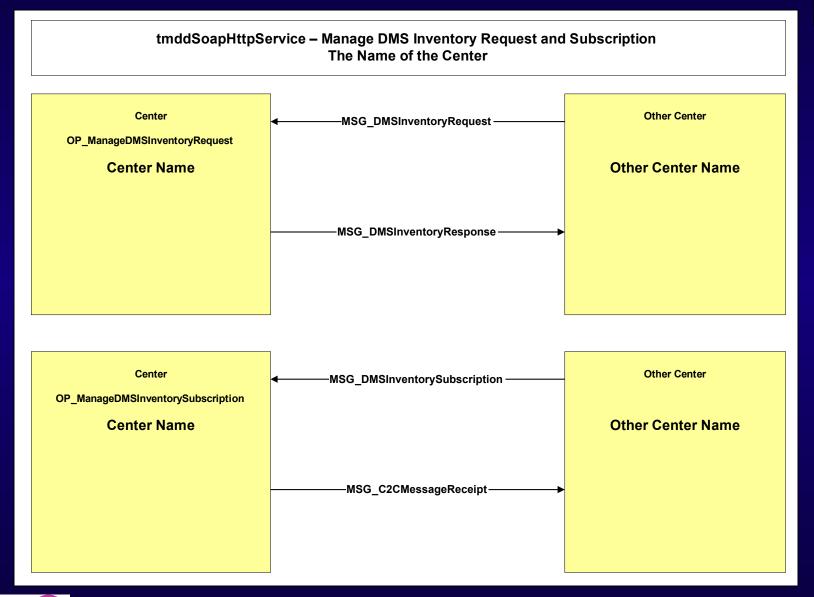
Detailed Design Report

- Detailed Requirements (C2F)
 - System Functions
 - Normal Conditions
 - Abnormal Conditions
 - Control Modes
 - System Monitoring
 - Installation and Testing

Detailed Design Report - Example

• Sign Display Behavior After Bootup

- When the DMS is first powered on, the DMS face shall remain blank during the power-up and boot-up cycle. Once the boot-up cycle is complete, the DMS will display a default message until a message is commanded.
- The default message to be displayed can be a blank message, a specific defined message, or the last message commanded before the DMS was shut down. Note that a different default message may be displayed if the DMS controller was shut down due to a controller software reset command or a momentary power loss (see below). The duration of time which constitutes a momentary power loss is user-defined.
- The default message to be displayed after a DMS Bootup is currently a **blank** message.
- Sign Display After a Momentary Power Loss
 - If the elapsed time is less than the defined time duration, for example, one second, the DMS can be configured to display a default message. The default message to be displayed can be a blank message, a specific defined message, or the last message commanded before the DMS momentarily lost power.
- The current default message to be displayed after a Momentary Power Loss shall remain the *current* message, and the defined time duration shall be *1 second*. The assumption is that if the DMS momentarily loses electrical power for less than 1 second, the message should not change from what is currently displayed before the momentary power³⁶ loss.


Detailed Design Report

- System Functions
 - Normal Operations
 - Abnormal Conditions
- Specific Messages
- Message Dialogs & Relation to System Functions
- Monitoring
- Installation and Testing

Example Dialogs for C2C

 \bigcirc

Advanced Detailed Plans

• High Level Design (C2F)

- Build on ConOps Information, and add
- Profile Implementation Conformance Specifications (PICS)
- MIB Objects Specification
- Example MIB

An example is provided in the "Best Practices Report"

Advanced Detailed Plans – Example PICS

Requirements ID	Functional Requirement	Project Requirement
1.0	Manage the DMS Configuration	
1.1	Identify DMS	
1.1.1	Determine Sign Type and Technology - The DMS shall allow a management station to determine its type (such as DMS, CMS, BOS, portable) and technology (such as LED, Fiber optic, bulb, hybrid).	dmsSignType(5 - vmsLine) dmsSignTechnolo gy(1 - LED)
1.2	Determine Message Display Capabilities	
1.2.1	Determine Basic Message Display Capabilities	
1.2.1.1	Determine the Size of the Sign Face - The DMS shall allow a management station to determine the height and width of the sign face.	
1.2.1.2	Determine the Size of the Sign Border - The DMS shall allow a management station to determine the size of the horizontal and vertical border around the sign face.	

An example is provided in the "Best Practices Report"

Advanced Detailed Plans

- High Level Design (C2C)
 - Focus on selection of Messages and Dialogs that support the project requirements
 - Preliminary selection of protocol
 - Identification of Application Profile
 - Profile Implementation Conformance Spec (PICS) derived from the Profile Requirements List
 - Based on NTCIP 2306 Solutions Bundles
 - Message Encoding (SOAP / XML) & Transport

Plans, Specifications & Estimates

- Detailed Requirements (C2F)
 - Final determination of functions the device must support
 - Final determination of optional elements that are mandatory for this project
 - Complete PICs and optionally a sample MIB

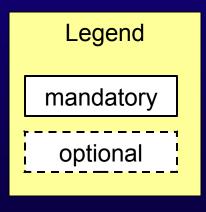
An example is provided in the "Best Practices Report"

Plans, Specifications & Estimates – Example MIB

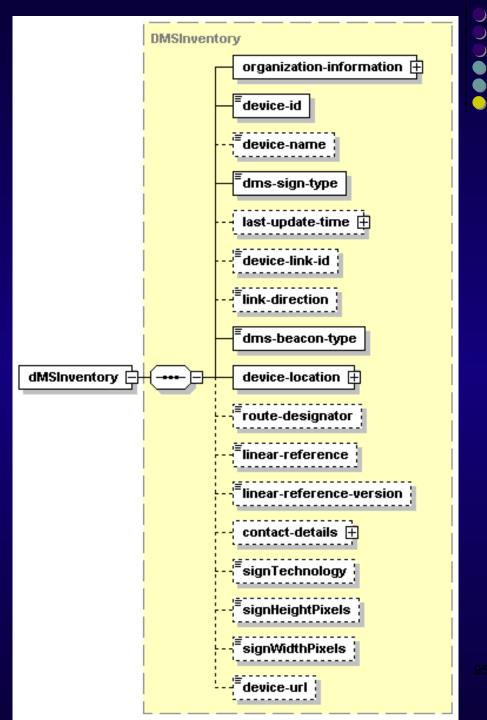
- -- 1.2 SIGN CONFIGURATION AND CAPABILITY OBJECTS
- dmsSignCfg_OBJECT IDENTIFIER ::= { dms 1 }
- -- This node is an identifier used to group all objects for DMS sign
- -- configurations that are common to all DMS devices.
- -- 1.2.1 Sign Access Parameter
- dmsSignAccess OBJECT-TYPE
- SYNTAX INTEGER (0..255)
- ACCESS read-only
- STATUS optional
- DESCRIPTION
- "<Definition> Indicates the access method to the sign. Methods that are defined are:
- Bit 0- Other
- Bit 1- Walk-in access
- Bit 2- Rear access
- Bit 3- Front access
- If a bit is set to one (1), then the associated feature exists; if the bit is set to zero (0), then the associated feature does not exist.
- <DescriptiveName>DMS.signAccess:code
- <DataConceptType>Data Element"
- .:= { dmsSignCfg 1 }
- -- 1.2.2 Sign Type Parameter
- dmsSignType OBJECT-TYPE
- SYNTAX INTEGER{
 - other (1),
 - bos (2)

0

Plans, Specifications & Estimates


- Detailed Requirements (C2C)
 - Final determination of optional elements in the messages that are mandatory for this project
 - Final determination of protocol
 - Completed WSDL Worksheet, PICs, and optionally sample messages and WSDL

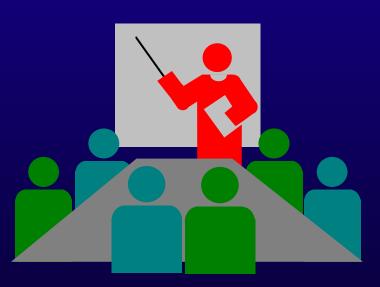
An template is provided in the "Best Practices Report"



Example C2C XML Message Template Showing Optional and Mandatory Data Elements

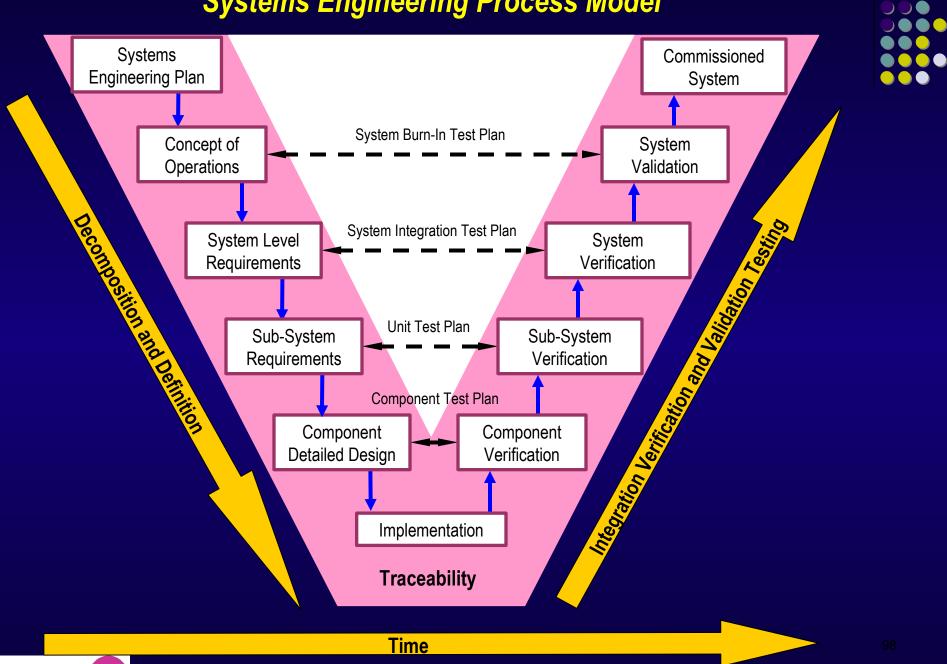
> Agencies need to determine which optional elements are mandatory!

Example C2C Message


en e	
<dmsinventory></dmsinventory>	
<device-list></device-list>	
<device></device>	
	<organization-information></organization-information>
	<organization-id></organization-id>
	tmc.dot.state.org
	<organization-name></organization-name>
	The State DOT
	<operator-id>0</operator-id>
	<device-id>22</device-id>
	<device-name>22.dms.dot.state.org</device-name>
	<dms-sign-type>variable message sign</dms-sign-type>
	<device-location></device-location>
	<latitude>XXXXXXXX</latitude>
	<longitude>YYYYYYY</longitude>
	>
	Continue with additional devices

</dMSInventory>

 $\bigcirc \bigcirc$



Systems Engineering Process Model

 $\bigcirc \bigcirc$

- Types of Testing (Center-to-Center)
 - Dialogs are implemented as specified
 - System can exchange messages
 - System can extract data elements from message content

- Types of Testing (Center-To-Field)
 - Hardware Tests
 - Electrical, Mechanical
 - Environmental Tests
 - Temperature, Humidity, Vibration
 - Functional Tests
 - Does it do what I expect it to do?
 - Performance Tests
 - Does it respond or function in a timely manner?
 - Standards Conformance Tests

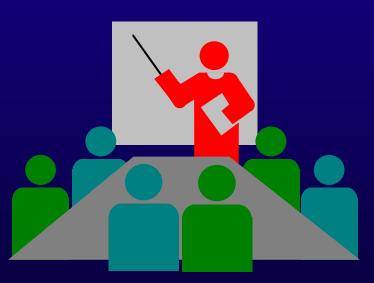
- ITS Standards are NOT functional requirements.
 - The data "objects" and messages defined
 SUPPORTS the functional requirements.
- Functional Testing
 - Tests if the device "complies" with the functional requirements.
- Standards Testing
 - Tests if the device "conforms" with the specified standard

Conformance

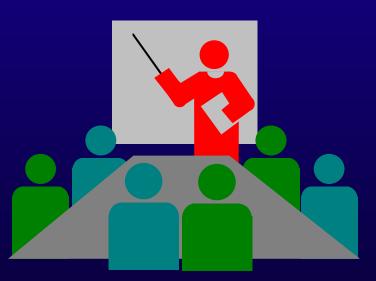
- To claim "Conformance" to a Standard, the vendor must minimally satisfy the mandatory requirements as identified in the Standard.
- In addition, a conformant device may offer additional (optional) features, as long as they are conformant with the requirements of the Standard and the standards it references.

Testing Tools

- MIB Compiler
- MIB Viewer
- SNMP Manager Software
- Device Simulator (for example, SNMP Agent running on a PC)
- NTCIP Exerciser
 - SNMP Manager
 - Device Simulator


Certification

- ITS standards do not certify, nor provide a way to certify, a device or manufacturer
- Certification is ideal for public sector, but there are issues:
 - Each unit is different
 - Who certifies the certifiers?
- Considering Conformance Statements


Your Comments about the Workshop??

ITS Standards Discussion Support Charts

Highlight of Key ITS Standards (Center-To-Center)

ITS Functional Area	SDO	Message Set / Protocol Name	Version Status
Traffic Management (Message Set)	ITE/AASHTO	Message Set for External TMC Communications	Version 2.1 Complete
Incident Management (Message Set)	IEEE	1512 BASE, 1512.1 (Traffic Incidents), 1512.2 (Public Safety), 1512.3 (HAZMAT)	Version 2 nearing completion or in ballot
Traveler Information (Message Set)	SAE	J2354 – ATIS Message Set	Version 2 under Development Complete
Transit (Message Set)	ΑΡΤΑ	TCIP	Version 2.7 under development
Center-to-Center Communications (Message Encoding and Transport)	NTCIP	W3C Web Services Architecture-based (NTCIP 2306)	Version 1 in User Comment Draft development, being deployed in New York and Texas.
CoriSysTec Corp		DATEX ISO-14827 (NTCIP 2304)	Complete

Highlight of Key ITS Standards (Center-To-Field)

ITS Functional Area	SDO	Version Status
Global Objects	NTCIP 1201	Version 2 Complete.
DMS	NTCIP 1203	Version 2 Balloted. VDOT, ENTERPRISE, ISTHA
ESS	NTCIP 1204	Version 2 Balloted.
TSS	NTCIP 1209	Version 1 in Ballot. Device support is uncertain.
DCM	NTCIP 1206	Version 1 Balloted and Complete. Device support is uncertain.
CCTV	NTCIP 1205	Version 2 Balloted and Complete. FDOT using in Florida.
Video Switch	NTCIP 1208	Version 1 is Balloted and Complete.
Ramp Meters	NTCIP 1207	Version 1 complete. Standard is being deployed in Utah.
Traffic Signal Controller	NTCIP 1202	Version 1 is complete. 2070 or ATC is required.
Field Management Stations	NTCIP 1210	Version 1 is Balloted.
Signal Prioritization	NTCIP 1211	Version 1 complete.
Network Camera Operation	NTCIP 1212	In draft.

Highlight of Key ITS Standards (Supporting)

SDO	Version Status
NTCIP 2101	Point to Multi Point Protocol (PMPP) Using RS-232 Sub Network Profile
NTCIP 2102	Point to Multi Point Protocol (PMPP) Using Frequency Shift Key (FSK) Network Profile
NTCIP 2103	Point-to-Point Protocol (PPP) Over RS-232 Sub network Profile
NTCIP 2104	Ethernet Sub network Profile
NTCIP 2201	Transportation Transport Profile ("NULL" Transport Profile)
NTCIP 2202	Internet (TCIP/IP and UDP/IP) Transport Profile
NTCIP 2301	Simple Transportation Management Framework (STMF) Application Profile
NTCIP 2302	Trivial File Transfer Protocol (TFTP) Application Profile
NTCIP 2303	File Transfer Protocol (FTP) Application Profile
NTCIP 2304	DATEX-ASN Application Profile
NTCIP 2305	CORBA Application Profile
NTCIP 2306	Application Profile for XML in ITS Center-To-Center Communications

ConSysTec Corp